Gain control mechanisms in spinal motoneurons
نویسندگان
چکیده
Motoneurons provide the only conduit for motor commands to reach muscles. For many years, motoneurons were in fact considered to be little more than passive "wires". Systematic studies in the past 25 years however have clearly demonstrated that the intrinsic electrical properties of motoneurons are under strong neuromodulatory control via multiple sources. The discovery of potent neuromodulation from the brainstem and its ability to change the gain of motoneurons shows that the "passive" view of the motor output stage is no longer tenable. A mechanism for gain control at the motor output stage makes good functional sense considering our capability of generating an enormous range of forces, from very delicate (e.g., putting in a contact lens) to highly forceful (emergency reactions). Just as sensory systems need gain control to deal with a wide dynamic range of inputs, so to might motor output need gain control to deal with the wide dynamic range of the normal movement repertoire. Two problems emerge from the potential use of the brainstem monoaminergic projection to motoneurons for gain control. First, the projection is highly diffuse anatomically, so that independent control of the gains of different motor pools is not feasible. In fact, the system is so diffuse that gain for all the motor pools in a limb likely increases in concert. Second, if there is a system that increases gain, probably a system to reduce gain is also needed. In this review, we summarize recent studies that show local inhibitory circuits within the spinal cord, especially reciprocal and recurrent inhibition, have the potential to solve both of these problems as well as constitute another source of gain modulation.
منابع مشابه
Nicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion
Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...
متن کاملبررسی تغییرات فاکتور نروتروفیکی BDNF و گیرندههای آن (P75, TrK-B) پس از قطع عصب سیاتیک در نوزاد موش صحرایی
Background & Objective : As apoptotic cell death plays an important role in natural development and many pathologic conditions such as cancer and neurodegenerative diseases, understanding of its molecular mechanisms can be useful in designing new therapeutic strategies. In present study following induction of apoptosis in spinal motoneurons, expression of neurotrophic factor BDNF, and its rec...
متن کاملTime Course of Axotomy-induced Changes in Synaptophysin Pattern and Synaptic Reaction of Spinal Motoneurons in Adult Rat
Background and Objective: Evaluation of degenerative changes of motoneurons and their related synapses can be useful in understanding the mechanisms of neurodegenerative diseases and their potential treatment. The present electron microscopic and immunohistochemical study investigates the axotomy-induced...
متن کاملPost-Operative Time Effects after Sciatic Nerve Crush on the Number of Alpha Motoneurons, Using a Sterological Counting Method (Disector)
There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Wallerian degeneration and chromatolysis are the most conspicuous phenomena that occur in response to injuries. In this research, the effects of post-operative time following sciatic nerve crush on the number of spinal motoneurons were investigated....
متن کاملDelayed Synaptic Changes in Axotomized Spinal Motoneurons of Newborn Rats Associated with Progressive Neuronal Loss: Immunohistochemical, Ultrastructural, and Quantitative Study
Background and Objective: Sciatic nerve transection is characterized by a rapid wave of motoneuron death associated with progressive synaptic lesions. The purpose of this study was to evaluate the long term synaptic changes. Materials and Methods: This basic study was carried out on paraffin- or resin-em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014